- 14. Н. Е. Алексеевский, Н. Б. Брандт, Т. И. Костина. Изв. АН СССР. Сер. физ, 16, 233, 1952.
 - В. Г. Барьяхтар, А. А. Галкин, С. Н. Ковнер, В. А. Попов. ЖЭТФ, 58, 494, 1970.
 - A. A. Galkin, S. N. Kovner, V. A. Popov. Phys. status solidi (b), 57, 485, 1973.
 - 17. В. А. Попов, В. С. Кулешов. ФТТ, 16, 612, 1974.
 - 18. K. Yosida. Progr. Theor. Phys., 7, 425, 1952.
 - 19. H. J. Gerritsen. Physica, 21, 639, 1955.
 - 20. В. А. Попов, В. И. Скиданенко. ФТТ, 15, 899, 1973.
 - 21. М. И. Каганов, В. М. Цукерник. ЖЭТФ, 34, 106, 1958.
 - 22. Е. А. Туров, Ю. П. Ирхин. Изв. АН СССР. Сер. физ., 22, 1168, 1958.
 - 23. В. Г. Барьяхтар, Е. В. Зароченцев, В. А. Попов. ФТТ, 11, 2344, 1969.
 - 24. В. А. Попов, В. И. Скиданенко. Особенности резонансных свойств при опрокидывании магнитных подрешеток в наклонном магнитном поле. Препринт ФТИНТ. АН УССР, Харьков, 1971.
 - 25. G. E. G. Hardeman, N. J. Poulis. Physica, 21, 728, 1955.

Донецкий физико-технический институт АН УССР Физико-технический институт низких температур АН УССР Поступила в редакцию 17 сентября 1975 г.

A. A. GALKIN, V. A. POPOV, P. I. POLYAKOV, and V. G. SYNKOV

EFFECTS OF TEMPERATURE AND HYDROSTATIC PRESSURE ON INCLINED-FIELD AFMR IN CuCl₂ · 2H₂O

AFMR properties of $CuCl_2 \cdot 2H_2O$ at low frequencies $v \approx 0.7 - 4.9 \,GHz$ were studied as functions of hydrostatic head ($p = 0 - 11.2 \,kbar$) and temperature ($T = 1.68 - 4.2^{\circ}$ K). Experimental results are compared with theoretical predictions. The magnetoelastic parameters are deduced which determine pressure variation of the exchange and relativistic AFM parameters.

LIST OF SYMBOLS

v, cyclic frequency of the h. f. field; ρ , pressure; ψ , angle between the easy axis a and the external magnetic field, the latter oriented within the ab crystallog-raphic plane; T, temperature; $H_{1\rho}$ and $H_{2\rho}$, lower and upper resonance fields; ψ_{f} and H_{f} , AFMR failure angle and field; M_{1} and M_{2} , sublattice magnetic moments; δ and β , β' , ρ , ρ' , exchange parameter and magnetic anisotropy constants; $\chi_{||}$ and χ_{\perp} , parallel and perpendicular magnetic susceptibility; $l_{||}$ and l_{\perp} , antiferromagnetic and «spin-flop» phases; H_{a1} and H_{a2} , fields corresponding to the zero-field AFMR frequencies; H_{1} and H_{12} , fields determining the stability region of the $l_{||}$ phase with the magnetic sublattices flopping into either ab or ac plane, respectively; H_{n} , field at which the both phases are in equilibrium; ω , angular frequency: ω_{2min} and H_{2min} , frequency and field corresponding to the minimum on the $\omega_{2}(H)$ dependence at $\psi > \psi_{k}$; $\psi_{k} \approx (\rho_{0} + \rho')/4\delta$; $\omega_{0} = \omega/\gamma H_{c}$; $H_{11}^{(2)}$, resonance field of branch ω_{2} of the $l_{||}$ phase; H_{m} , field of the resonance isogon maximum; $\omega_{\perp}(H)$, resonance frequency for the l_{\perp} phase.

FIGURE CAPTIONS

Fig 1. High-pressure chamber.

Fig 2. Dependence $H_p(\psi)$ for various frequencies ν (in *GHz*) and pressures (in *kbar*) at $T = 1.68^{\circ}$ K: $p_1 = 0$, $\nu_2 = 3.14$ (•), $\nu_3 = 4.88$ (○); $p_2 = 5.2$, $\nu_2 = 3.1$ (▲), $\nu_3 = 4.65$ (△); $p_3 = 9.2$, $\nu_2 = 2.95$ (▼); $\nu_3 = 4.60$ (▽); $p_4 = 11.2$, $\nu_2 = 2.85$ (■), $\nu_3 = 4.48$ (□). The solid lines are calculated for p_1 , ν_3 and p_2 , ν_3 .

Fig 3. Resonance fields and failure angle ψ_f as functions of pressure at $T = 1.68^{\circ}$ K and $\gamma = 3 GHz$: $\bigcirc -H_{1p}$; $\bigtriangleup -H_{2p}$; $\Box -H_f$; $\nabla -\psi_f$.

Fig. 4. Constant-pressure dependences $H_f(v)$, $\psi_f(v)$ at $T = 1.68^\circ$ K: $\nabla - H_f$, $O - \psi_f$ at $p_1 = 0$; $\nabla - H_f$, $\bullet - \psi_f$ at $p_4 = 11.2$ kbar. The solid lines are calculated $H_f(v)$ and $\psi_f(v)$.

Fig 5. Dependence $H_{\rm p}(\psi)$ for various temperatures, frequencies (in *GHz*) and pressures p (in *kbar*): $p_1 = 0$, $v_1 = 0.76$, $v_2 = 3.14$, $v_3 = 4.88$; $p_2 = 52$, $v_1 = 0.73$, $v_2 = 3.1$, $v_3 = 4.65$; $p_3 = 9.2$, $v_1 = 0.68$, $v_2 = 2.29$, $v_3 = 4.60$; $p_4 = 11.2$, $v_1 = 0.64$, $v_2 = 2.85$, $v_3 = 4.48$; $v_1 - \Delta$, $v_2 - \times$, $v_3 - \bigcirc$, \Box , \diamondsuit .

Fig 6. The resonance fields as functions of temperature at various pressures p (in *kbar*) and frequencies ν (in *GHz*): $p_1 = 0$, $\nu_2 = 3.14$ (×), $\nu_3 = 4.88$ (○); $p_2 = 5.2$, $\nu_2 = 3.1$ (×); $\nu_3 = 4.65$ (□); $p_4 = 11.2$, $\nu_2 = 2.85$ (×); $\nu_3 = 4.48$ (◇). The solid lines are calculations for p_1 , ν_3 and p_4 , ν_3 .

Fig 7. H_f and ψ_f versus temperature: $p_1 = 0$, $v_3 = 4.88 \ GHz$, $\Box - H_f$, $\bigcirc -\psi_f$; $p_2 = 9.2 \ kbar$, $v_3 = 4.60 \ GHz$, $\blacksquare - H_f$, $\bigcirc -\psi_f$. The solid lines are calculations.